Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(6): e0214121, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044216

RESUMO

Due to the high mutation rate of influenza virus and the rapid increase of drug resistance, it is imperative to discover host-targeting antiviral agents with broad-spectrum antiviral activity. Considering the discrepancy between the urgent demand of antiviral drugs during an influenza pandemic and the long-term process of drug discovery and development, it is feasible to explore host-based antiviral agents and strategies from antiviral drugs on the market. In the current study, the antiviral mechanism of arbidol (ARB), a broad-spectrum antiviral drug with potent activity at early stages of viral replication, was investigated from the aspect of hemagglutinin (HA) receptors of host cells. N-glycans that act as the potential binding receptors of HA on 16-human bronchial epithelial (16-HBE) cells were comprehensively profiled for the first time by using an in-depth glycomic approach based on TiO2-PGC chip-Q-TOF MS. Their relative levels upon the treatment of ARB and virus were carefully examined by employing an ultra-high sensitive qualitative method based on Chip LC-QQQ MS, showing that ARB treatment led to significant and extensive decrease of sialic acid (SA)-linked N-glycans (SA receptors), and thereby impaired the virus utilization on SA receptors for rolling and entry. The SA-decreasing effect of ARB was demonstrated to result from its inhibitory effect on sialyltransferases (ST), ST3GAL4 and ST6GAL1 of 16-HBE cells. Silence of STs, natural ST inhibitors, as well as sialidase treatment of 16-HBE cells, resulted in similar potent antiviral activity, whereas ST-inducing agent led to the diminished antiviral effect of ARB. These observations collectively suggesting the involvement of ST inhibition in the antiviral effect of ARB. IMPORTANCE This study revealed, for the first time, that ST inhibition and the resulted destruction of SA receptors of host cells may be an underlying mechanism for the antiviral activity of ARB. ST inhibition has been proposed as a novel host-targeting antiviral approach recently and several compounds are currently under exploration. ARB is the first antiviral drug on the market that was found to possess ST inhibiting function. This will provide crucial evidence for the clinical usages of ARB, such as in combination with neuraminidase (NA) inhibitors to exert optimized antiviral effect, etc. More importantly, as an agent that can inhibit the expression of STs, ARB can serve as a novel lead compound for the discovery and development of host-targeting antiviral drugs.


Assuntos
Indóis , Sialiltransferases , Sulfetos , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Células Epiteliais , Glicômica , Hemaglutininas , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Neuraminidase/farmacologia , Polissacarídeos/metabolismo , Sialiltransferases/antagonistas & inibidores , Sulfetos/farmacologia , Sulfetos/uso terapêutico
2.
Arterioscler Thromb Vasc Biol ; 42(3): 305-325, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045729

RESUMO

BACKGROUND: ANG (angiogenin) is essential for cellular adaptation to endoplasmic reticulum (ER) stress, a process closely associated with cardiovascular diseases, including atherosclerosis. We aimed to investigate the role of ANG in the progression of atherosclerosis and elucidate its underlying molecular mechanisms. METHODS: We constructed adenoassociated virus 9 ANG overexpression vectors and endothelial ANG- and ApoE (apolipoprotein E)-deficient mice to determine the effects of ANG on ER stress and atherosclerotic lesions. RNA sequencing of endothelial ANG- and ApoE-deficient mice identified ANG-dependent downregulation of ST3GAL5 (ST3 beta-galactoside alpha-2,3-sialyltransferase 5) expression, and the direct regulation of ST3GAL5 by ANG was verified by chromatin immunoprecipitation sequencing and luciferase reporter assay results. RESULTS: Reanalysis of expression profiling datasets indicated decreased ANG levels in patients' atherosclerotic lesions, and these data were validated in aortas from ApoE-/- mice. ER stress marker and adhesion molecule levels, aortic root lesions and macrophage deposition were substantially reduced in ApoE-/- mice injected with an adenoassociated virus 9 ANG without signal peptide (ANG-ΔSP) overexpression vector compared with empty and full-length ANG overexpression vectors. Endothelial ANG deficiency significantly elevated ER stress and increased adhesion molecule expression, which aggravated atherosclerotic lesions and enhanced THP-1 monocyte adhesion to endothelial cells in vivo and in vitro, respectively. Furthermore, ANG-ΔSP overexpression significantly attenuated oxidized low-density lipoprotein-induced ER stress and THP-1 monocyte adhesion to endothelial cells, which were reversed by ST3GAL5 inhibition. CONCLUSIONS: These results suggest that endothelial intracellular ANG is a novel therapeutic against atherosclerosis and exerts atheroprotective effects via ST3GAL5-mediated ER stress suppression.


Assuntos
Aterosclerose/prevenção & controle , Estresse do Retículo Endoplasmático/fisiologia , Ribonuclease Pancreático/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , Modelos Cardiovasculares , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease Pancreático/deficiência , Ribonuclease Pancreático/genética , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/genética , Sialiltransferases/metabolismo , Regulação para Cima
3.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830075

RESUMO

This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Gangliosídeos/biossíntese , Células-Tronco Mesenquimais/enzimologia , Nucleosídeo NM23 Difosfato Quinases/farmacologia , Neurônios/enzimologia , Sialiltransferases/antagonistas & inibidores , Animais , Humanos , Sialiltransferases/metabolismo , Suínos , Porco Miniatura
4.
Curr Top Med Chem ; 21(13): 1113-1120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34259146

RESUMO

The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. It has been proposed that NCAM polysialylation could be inhibited by two types of heparin inhibitors, low molecular heparin (LMWH) and heparin tetrasaccharide (DP4). This review summarizes how the interactions between Polysialyltransferase Domain (PSTD) in ST8SiaIV and CMP-Sia, and between the PSTD and polySia take place, and how these interactions are inhibited by LMWH and DP4. Our NMR studies indicate that LMWH is a more effective inhibitor than DP4 for inhibition of NCAM polysialylation. The NMR identification of heparin-binding sites in the PSTD may provide insight into the design of specific inhibitors of polysialylation.


Assuntos
Inibidores Enzimáticos/farmacologia , Heparina/farmacologia , Sialiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Heparina/química , Humanos , Domínios Proteicos/efeitos dos fármacos , Sialiltransferases/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206740

RESUMO

N-Glycosylations are an important post-translational modification of proteins that can significantly impact cell function. Terminal sialic acid in hybrid or complex N-glycans has been shown to be relevant in various types of cancer, but its role in non-malignant cells remains poorly understood. We have previously shown that the motility of human bone marrow derived mesenchymal stromal cells (MSCs) can be modified by altering N-glycoforms. The goal of this study was to determine the role of sialylated N-glycans in MSCs. Here, we show that IFN-gamma or exposure to culture media low in fetal bovine serum (FBS) increases sialylated N-glycans, while PDGF-BB reduces them. These stimuli alter mRNA levels of sialyltransferases such as ST3Gal1, ST6Gal1, or ST3Gal4, suggesting that sialylation of N-glycans is regulated by transcriptional control of sialyltransferases. We next show that 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-Neu5Ac) effectively inhibits sialylations in MSCs. Supplementation with 3F-Neu5Ac increases adhesion and migration of MSCs, as assessed by both videomicroscopy and wound/scratch assays. Interestingly, pre-treatment with 3F-Neu5Ac also increases the survival of MSCs in an in vitro ischemia model. We also show that pre-treatment or continuous treatment with 3F-Neu5Ac inhibits both osteogenic and adipogenic differentiation of MSCs. Finally, secretion of key trophic factors by MSCs is variably affected upon exposure to 3F-Neu5Ac. Altogether, our experiments suggest that sialylation of N-glycans is tightly regulated in response to environmental cues and that glycoengineering MSCs to reduce sialylated N-glycans could be beneficial to increase both cell migration and survival, which may positively impact the therapeutic potential of the cells.


Assuntos
Movimento Celular , Células-Tronco Mesenquimais/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Sialiltransferases/metabolismo , Adipócitos/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Interferon gama/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/citologia , Sialiltransferases/antagonistas & inibidores
6.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200006

RESUMO

Influenza A viruses (IAVs) initiate infection by attaching Hemagglutinin (HA) on the viral envelope to sialic acid (SA) receptors on the cell surface. Importantly, HA of human IAVs has a higher affinity for α-2,6-linked SA receptors, and avian strains prefer α-2,3-linked SA receptors, whereas swine strains have a strong affinity for both SA receptors. Host gene CMAS and ST3GAL4 were found to be essential for IAV attachment and entry. Loss of CMAS and ST3GAL4 hindered the synthesis of sialic acid receptors, which in turn prevented the adsorption of IAV. Further, the knockout of CMAS had an effect on the adsorption of swine, avian and human IAVs. However, ST3GAL4 knockout prevented the adsorption of swine and avian IAV and the impact on avian IAV was more distinct, whereas it had no effect on the adsorption of human IAV. Collectively, our findings demonstrate that knocking out CMAS and ST3GAL4 negatively regulated IAV replication by inhibiting the synthesis of SA receptors, which also provides new insights into the production of gene-edited animals in the future.


Assuntos
Vírus da Influenza A/fisiologia , N-Acilneuraminato Citidililtransferase/antagonistas & inibidores , Infecções por Orthomyxoviridae/virologia , Receptores de Superfície Celular/metabolismo , Sialiltransferases/antagonistas & inibidores , Replicação Viral , Animais , Sistemas CRISPR-Cas , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/genética , N-Acilneuraminato Citidililtransferase/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Suínos
7.
Carbohydr Polym ; 259: 117741, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33674001

RESUMO

Polysialic acid (polySia) is a linear polysaccharide comprised of N-acetylneuraminic acid residues and its over-expression in cancer cells has been correlated with poor clinical prognosis. An assay has been developed for quantitative analysis of cellular polySia expression. This was achieved by extracting and purifying released polySia from glycoproteins by mild acid hydrolysis and optimised organic extraction. The polySia was further hydrolysed into Sia monomers, followed by fluorescent labelling and quantitative analysis. The assay was qualified utilising endoneuraminidase-NF to remove polySia from the surface of C6-ST8SiaII cancer cells (EC50 = 2.13 ng/mL). The result was comparable to that obtained in a polySia-specific cellular ELISA assay. Furthermore, the assay proved suitable for evaluation of changes in polySia expression following treatment with a small molecule inhibitor of polysialylation. Given the importance of polySia in multiple disease states, notably cancer, this is a potentially vital tool with applications in the fields of drug discovery and glycobiology.


Assuntos
Cromatografia de Fase Reversa , Ácidos Siálicos/análise , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ensaio de Imunoadsorção Enzimática , Glicosídeo Hidrolases/metabolismo , Ratos , Ácidos Siálicos/metabolismo , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/metabolismo
8.
Clin Transl Oncol ; 23(4): 902-910, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32939659

RESUMO

BACKGROUND: Chemoresistance is the major cause of therapeutic failure in triple negative breast cancer (TNBC). In this work, we investigated the molecular mechanism for the development of TNBC chemoresistance. METHODS: mRNA and protein levels of ST8SIA1 were analyzed in chemosensitive and chemoresistant TNBC cells and tissues. Proliferation and survival assays were performed to determine the role of ST8SIA1 in TNBC chemoresistance. RESULTS: We found that ST8SIA1 mRNA and protein levels were increased in multiple TNBC cell lines after prolonged exposure to chemotherapeutic drugs. Consistently, retrospective study demonstrated that the majority of TNBC patients who developed chemoresistance displayed upregulation of ST8SIA1. We further found that chemoresistant TNBC cells were more sensitive than chemosensitive cells to ST8SIA1 inhibition in decreasing growth and viability. Consistently, ST8SIA1 inhibition augmented the efficacy of chemotherapy in TNBC cells. Mechanism studies demonstrated that ST8SIA1 inhibition led to suppression of FAK/Akt/mTOR and Wnt/ß-catenin signalling pathways. CONCLUSIONS: These findings provide an explanation for the heterogeneity of chemotherapy responses across TNBC individuals and reveal the supportive roles of ST8SIA1in TNBC chemoresistance.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sialiltransferases/antagonistas & inibidores , Serina-Treonina Quinases TOR , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Via de Sinalização Wnt , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Estudos Retrospectivos , Sialiltransferases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
9.
J Med Chem ; 64(1): 527-542, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33371679

RESUMO

We report the synthesis and evaluation of a series of cell-permeable and N- versus O-selective sialyltransferase inhibitors. Inhibitor design entailed the functionalization of lithocholic acid at C(3) and at the cyclopentane ring side chain. Among the series, FCW34 and FCW66 were shown to inhibit MDA-MB-231 cell migration as effectively as ST3GALIII-gene knockdown did. FCW34 was shown to inhibit tumor growth, reduce angiogenesis, and delay cancer cell metastasis in animal models. Furthermore, FCW34 inhibited vessel development and suppressed angiogenic activity in transgenic zebrafish models. Our results provide clear evidence that FCW34-induced sialyltransferase inhibition reduces cancer cell metastasis by decreasing N-glycan sialylation, thus altering the regulation of talin/integrin/FAK/paxillin and integrin/NFκB signaling pathways.


Assuntos
Neoplasias da Mama/patologia , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Metástase Neoplásica/prevenção & controle , Sialiltransferases/antagonistas & inibidores , Animais , Animais Geneticamente Modificados , Catálise , Linhagem Celular Tumoral , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Glicoproteínas/metabolismo , Humanos , Integrinas/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Paxilina/metabolismo , Fosforilação , Sialiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Talina/metabolismo , Peixe-Zebra
10.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872308

RESUMO

Aberrant sialylation is frequently found in pancreatic ductal adenocarcinoma (PDA). α2,3-Sialyltransferases (α2,3-STs) ST3GAL3 and ST3GAL4 are overexpressed in PDA tissues and are responsible for increased biosynthesis of sialyl-Lewis (sLe) antigens, which play an important role in metastasis. This study addresses the effect of α2,3-STs knockdown on the migratory and invasive phenotype of PDA cells, and on E-selectin-dependent adhesion. Characterization of the cell sialome, the α2,3-STs and fucosyltransferases involved in the biosynthesis of sLe antigens, using a panel of human PDA cells showed differences in the levels of sialylated determinants and α2,3-STs expression, reflecting their phenotypic heterogeneity. Knockdown of ST3GAL3 and ST3GAL4 in BxPC-3 and Capan-1 cells, which expressed moderate to high levels of sLe antigens and α2,3-STs, led to a significant reduction in sLex and in most cases in sLea, with slight increases in the α2,6-sialic acid content. Moreover, ST3GAL3 and ST3GAL4 downregulation resulted in a significant decrease in cell migration and invasion. Binding and rolling to E-selectin, which represent key steps in metastasis, were also markedly impaired in the α2,3-STs knockdown cells. Our results indicate that inhibition of ST3GAL3 and ST3GAL4 may be a novel strategy to block PDA metastasis, which is one of the reasons for its dismal prognosis.


Assuntos
Selectina E/metabolismo , Neoplasias Pancreáticas/metabolismo , RNA Interferente Pequeno/farmacologia , Sialiltransferases/genética , Linhagem Celular Tumoral , Movimento Celular , Fucosiltransferases/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Sialiltransferases/antagonistas & inibidores
11.
Bioorg Med Chem ; 28(14): 115561, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32616185

RESUMO

Sialic acid at the terminus of cell surface glycoconjugates is a critical element in cell-cell recognition, receptor binding and immune responses. Sialyltransferases (ST), the enzymes responsible for the biosynthesis of sialylated glycans are highly upregulated in cancer and the resulting hypersialylation of the tumour cell surface correlates strongly with tumour growth, metastasis and drug resistance. Inhibitors of human STs, in particular human ST6Gal I, are thus expected to be valuable chemical tools for the discovery of novel anticancer drugs. Herein, we report on the computationally-guided design and development of uridine-based inhibitors that replace the charged phosphodiester linker of known ST inhibitors with a neutral carbamate to improve pharmacokinetic properties and synthetic accessibility. A series of 24 carbamate-linked uridyl-based compounds were synthesised by coupling aryl and hetaryl α-hydroxyphosphonates with a 5'-amino-5'-deoxyuridine fragment. The inhibitory activities of the newly synthesised compounds against recombinant human ST6Gal I were determined using a luminescent microplate assay, and five promising inhibitors with Ki's ranging from 1 to 20 µM were identified. These results show that carbamate-linked uridyl-based compounds are a potential new class of readily accessible, non-cytotoxic ST inhibitors to be further explored.


Assuntos
Carbamatos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Sialiltransferases/antagonistas & inibidores , Uridina/farmacologia , Antígenos CD/metabolismo , Carbamatos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Sialiltransferases/metabolismo , Relação Estrutura-Atividade , Uridina/análogos & derivados , Uridina/química
12.
Analyst ; 145(13): 4512-4521, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412559

RESUMO

The polysialyltransferases (polySTs) catalyse the polymerisation of polysialic acid, which plays an important role in tumour metastasis. While assays are available to assess polyST enzyme activity, there is no methodology available specifically optimised for identification and quantitative evaluation of potential polyST inhibitors. The development of an HPLC-fluorescence-based enzyme assay described within includes a comprehensive investigation of assay conditions, including evaluation of metal ion composition, enzyme, substrate and acceptor concentrations, temperature, pH, and tolerance to DMSO, followed by validation using known polyST inhibitors. Thorough analysis of each of the assay components provided a set of optimised conditions. Under these optimised conditions, the experimentally observed Ki value for CMP, a competitive polyST inhibitor, was strongly correlated with the predicted Ki value, based on the classical Cheng-Prusoff equation [average fold error (AFE) = 1.043]. These results indicate that this assay can provide medium-throughput analysis for enzyme inhibitors with high accuracy, through determining the corresponding IC50 values with substrate concentration at the KM, without the need to perform extensive kinetic studies for each compound. In conclusion, an in vitro cell-free assay for accurate assessment of polyST inhibition is described. The utility of the assay for routine identification of potential polyST inhibitors is demonstrated, allowing quantitative measurement of inhibition to be achieved, and exemplified through assessment of full competitive inhibition. Given the considerable and growing interest in the polySTs as important anti-metastatic targets in cancer drug discovery, this is a vital tool to enable preclinical identification and evaluation of novel polyST inhibitors.


Assuntos
Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/análise , Sialiltransferases/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Cinética , Quinoxalinas/síntese química , Quinoxalinas/química , Sialiltransferases/química , Trissacarídeos/síntese química , Trissacarídeos/química
13.
Biochemistry ; 59(12): 1242-1251, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32163271

RESUMO

Ganglioside GM3 is a sialylated membrane-based glycosphingolipid that regulates insulin receptor signaling via direct association with the receptor. The level of expression of GM3 synthase (GM3S) and GM3 is increased in tissues of patients with diabetes and murine models of diabetes, and obesity-induced insulin resistance is attenuated in GM3S-deficient mice. Therefore, GM3S has been considered a therapeutic target for type II diabetes; however, no GM3S inhibitors have been reported to date. In this study, we established a high-throughput scintillation proximity assay that can detect GM3S activity to screen GM3S inhibitors from our original chemical library. We also established methods for detecting the activity of GM3S and another sialyltransferase, ST3Gal3, through direct measurement of the enzyme products using an automatic rapid solid-phase extraction system directly coupled to a mass spectrometer. Consequently, we successfully identified two different chemotypes of GM3S-selective inhibitors with a mixed mode of inhibition. We believe that these compounds can be further developed into drugs to treat or prevent diabetes as well as contribute to the development of the ganglioside research field.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Gangliosídeo G(M3)/biossíntese , Ensaios de Triagem em Larga Escala/métodos , Hipoglicemiantes/farmacologia , Sialiltransferases/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Diabetes Mellitus Tipo 2/metabolismo , Ensaios Enzimáticos , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Hipoglicemiantes/uso terapêutico , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sialiltransferases/genética , Sialiltransferases/isolamento & purificação , Sialiltransferases/metabolismo , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
14.
Z Naturforsch C J Biosci ; 75(1-2): 41-49, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32031984

RESUMO

The overexpression of sialic acids and sialyltransferases (STs) during malignant transformation and progression could result in the aberrant sialylation of cancer cells. Therefore, interfering the sialic acid synthesis might be an effective pathway in cancer therapy. In this study, we assessed that the antitumor inhibitors of 20(S)-ginsenosides Rg3, 20(R)-ginsenosides Rg3, 20(S)-ginsenosides Rh2, and 20(R)-ginsenosides Rh2 could block the sialoglycans in liver cancer cells HepG2. The results showed that these four compounds could inhibit the expressions of the total and free sialic acid at different levels in HepG2, respectively; also, it showed dose dependence. In addition, the results of the enzyme-linked immunosorbent assay showed that the above four compounds can inhibit the expression of STs significantly. We also found that these compounds could mediate the block of sialylation of α2,3- and α2,6-linked sialic acids in HepG2 cells by flow cytometry. Meanwhile, the results of the molecular docking investigation showed that these compounds showed strong interaction with ST6GalI and ST3GalI. These results verified that the ginsenosides have a powerful inhibiting aberrant sialylation, and it laid a theoretical foundation for further research on the investigation of ginsenosides as the target inhibitors on STs.


Assuntos
Ginsenosídeos/farmacologia , Ácidos Siálicos/química , Sialiltransferases/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Sialiltransferases/química
15.
Curr Top Med Chem ; 19(31): 2831-2841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31755393

RESUMO

ST8Sia II (STX) is a highly homologous mammalian polysialyltransferase (polyST), which is a validated tumor-target in the treatment of cancer metastasis reliant on tumor cell polysialylation. PolyST catalyzes the synthesis of α2,8-polysialic acid (polySia) glycans by carrying out the activated CMP-Neu5Ac (Sia) to N- and O-linked oligosaccharide chains on acceptor glycoproteins. In this review article, we summarized the recent studies about intrinsic correlation of two polybasic domains, Polysialyltransferase domain (PSTD) and Polybasic region (PBR) within ST8Sia II molecule, and suggested that the critical amino acid residues within the PSTD and PBR motifs of ST8Sia II for polysialylation of Neural cell adhesion molecules (NCAM) are related to ST8Sia II activity. In addition, the conformational changes of the PSTD domain due to point mutations in the PBR or PSTD domain verified an intramolecular interaction between the PBR and the PSTD. These findings have been incorporated into Zhou's NCAM polysialylation/cell migration model, which will provide new perspectives on drug research and development related to the tumor-target ST8Sia II.


Assuntos
Inibidores Enzimáticos/farmacologia , Sialiltransferases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/química , Humanos , Mutação Puntual , Domínios Proteicos , Sialiltransferases/genética , Sialiltransferases/metabolismo
16.
Org Biomol Chem ; 17(31): 7304-7308, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339142

RESUMO

Disialosyl globopentaosylceramide (DSGb5) is often expressed by renal cell carcinomas. To investigate properties of DSGb5, we have prepared its oligosaccharide moiety by chemically synthesizing Gb5 which was enzymatically sialylated using the mammalian sialyltransferases ST3Gal1 and ST6GalNAc5. Glycan microarray binding studies indicate that Siglec-7 does not recognize DSGb5, and preferentially binds Neu5Acα(2,8)Neu5Ac containing glycans.


Assuntos
Carcinoma de Células Renais/química , Inibidores Enzimáticos/farmacologia , Globosídeos/farmacologia , Neoplasias Renais/química , Oligossacarídeos/farmacologia , Sialiltransferases/antagonistas & inibidores , Antígenos de Neoplasias , Configuração de Carboidratos , Inibidores Enzimáticos/química , Globosídeos/síntese química , Globosídeos/química , Células HEK293 , Humanos , Análise em Microsséries , Oligossacarídeos/química , Sialiltransferases/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase
17.
Arch Dermatol Res ; 311(3): 249-250, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30788567

RESUMO

The process of melanin biosynthesis and its distribution throughout the skin is regulated by complex processes involving several enzymes in melanocytes. Recently, Diwakar et al. demonstrated that cytidine-a sialyltransferase inhibitor, 6'-sialyllactose (6'-SL) and 3'-sialyllactose (3'-SL) inhibited melanogenesis and melanosome transfer process. In this study, we have furthered this research, considering cytidine as a commercially viable and safe option over 6'-SL and 3'-SL. The efficacy of 2% w/v cytidine was studied in MelanoDerm™ skin equivalents in comparison with the positive control 1% w/v kojic acid and the vehicle control. Both the positive control and cytidine demonstrated a significant reduction in melanin content relative to the vehicle control. These experiments conclude that cytidine can effectively reduce melanin content in a skin equivalence assay and suggests that cytidine may be a good candidate for a skin lightening agent for human skin.


Assuntos
Citidina/farmacologia , Inibidores Enzimáticos/farmacologia , Melaninas/metabolismo , Sialiltransferases/antagonistas & inibidores , Preparações Clareadoras de Pele/farmacologia , Pigmentação da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Regulação para Baixo , Humanos , Pironas/farmacologia , Sialiltransferases/metabolismo , Pele/citologia , Pele/enzimologia , Técnicas de Cultura de Tecidos
18.
Eur J Med Chem ; 167: 245-268, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772607

RESUMO

A medicinal chemistry program based on the small-molecule HCV NS5A inhibitor daclatasvir has led to the discovery of dimeric phenylthiazole compound 8, a novel and potent HCV NS5A inhibitor. The subsequent SAR studies and optimization revealed that the cycloalkyl amide derivatives 27a-29a exhibited superior potency against GT1b with GT1b EC50 values at picomolar concentration. Interestingly, high diastereospecificity for HCV inhibition was observed in this class with the (1R,2S,1'R,2'S) diastereomer displaying the highest GT1b inhibitory activity. The best inhibitor 27a was found to be 3-fold more potent (GT1b EC50 = 0.003 nM) than daclatasvir (GT1b EC50 = 0.009 nM) against GT1b, and no detectable in vitro cytotoxicity was observed (CC50 > 50 µM). Pharmacokinetic studies demonstrated that compound 27a had an excellent pharmacokinetic profiles with a superior oral exposure and desired bioavailability after oral administration in both rats and dogs, and therefore it was selected as a developmental candidate for the treatment of HCV infection.


Assuntos
Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Tiazóis/farmacocinética , Proteínas não Estruturais Virais/antagonistas & inibidores , Amidas/química , Animais , Disponibilidade Biológica , Cães , Humanos , Ratos , Sialiltransferases/antagonistas & inibidores , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/uso terapêutico
19.
J Med Chem ; 62(2): 1014-1021, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30543426

RESUMO

Sialic acid sugars on mammalian cells regulate numerous biological processes, while aberrant expression of sialic acid is associated with diseases such as cancer and pathogenic infection. Inhibition of the sialic acid biosynthesis may therefore hold considerable therapeutic potential. To effectively decrease the sialic acid expression, we synthesized C-5-modified 3-fluoro sialic acid sialyltransferase inhibitors. We found that C-5 carbamates significantly enhanced and prolonged the inhibitory activity in multiple mouse and human cell lines. As an underlying mechanism, we have identified that carbamate-modified 3-fluoro sialic acid inhibitors are more efficiently metabolized to their active cytidine monophosphate analogues, reaching higher effective inhibitor concentrations inside cells.


Assuntos
Ácidos Siálicos/química , Sialiltransferases/antagonistas & inibidores , Amidas/química , Animais , Carbamatos/química , Carbono/química , Linhagem Celular , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/metabolismo , Halogenação , Humanos , Camundongos , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Sialiltransferases/metabolismo
20.
Med Chem ; 15(5): 486-495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30569872

RESUMO

BACKGROUND: The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. Heparin has been found to be effective in inhibiting the ST8Sia IV activity, but no clear molecular rationale. It has been found that polysialyltransferase domain (PSTD) in polyST plays a significant role in influencing polyST activity, and thus it is critical for NCAM polysialylation based on the previous studies. OBJECTIVE: To determine whether the three different types of heparin (unfractionated hepain (UFH), low molecular heparin (LMWH) and heparin tetrasaccharide (DP4)) is bound to the PSTD; and if so, what are the critical residues of the PSTD for these binding complexes? METHODS: Fluorescence quenching analysis, the Circular Dichroism (CD) spectroscopy, and NMR spectroscopy were used to determine and analyze interactions of PSTD-UFH, PSTD-LMWH, and PSTD-DP4. RESULTS: The fluorescence quenching analysis indicates that the PSTD-UFH binding is the strongest and the PSTD-DP4 binding is the weakest among these three types of the binding; the CD spectra showed that mainly the PSTD-heparin interactions caused a reduction in signal intensity but not marked decrease in α-helix content; the NMR data of the PSTD-DP4 and the PSTDLMWH interactions showed that the different types of heparin shared 12 common binding sites at N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, and K276, which were mainly distributed in the long α-helix of the PSTD and the short 3-residue loop of the C-terminal PSTD. In addition, three residues K246, K250 and A254 were bound to the LMWH, but not to DP4. This suggests that the PSTD-LMWH binding is stronger than the PSTD-DP4 binding, and the LMWH is a more effective inhibitor than DP4. CONCLUSION: The findings in the present study demonstrate that PSTD domain is a potential target of heparin and may provide new insights into the molecular rationale of heparin-inhibiting NCAM polysialylation.


Assuntos
Heparina de Baixo Peso Molecular/metabolismo , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Dicroísmo Circular , Humanos , Ligação Proteica , Domínios Proteicos , Espectroscopia de Prótons por Ressonância Magnética , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...